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Dynamic deformation and failure mechanisms in polycrystalline ceramics are investigated through con-
stitutive modeling and numerical simulation. Two ceramics are studied: silicon carbide (SiC, hexagonal
crystal structure) and aluminum oxynitride (AlON, cubic crystal structure). Three dimensional finite ele-
ment simulations incorporate nonlinear anisotropic elasticity for behavior of single crystals within poly-
crystalline aggregates, cohesive zone models for intergranular fracture, and contact interactions among
fractured interfaces. Boundary conditions considered include uniaxial strain compression, uniaxial stress
compression, and shear with varying confinement, all at high loading rates. Results for both materials
demonstrate shear-induced dilatation and increasing shear strength with increasing confining pressure.
Failure statistics for unconfined loading exhibit a smaller Weibull modulus (corresponding to greater
scatter in peak failure strength) in AlON than in SiC, likely a result of lower prescribed cohesive fracture
strength and greater elastic anisotropy in the former. In both materials, the predicted Weibull modulus
tends to decrease with an increasing number of grains contained in the simulated microstructure.

Published by Elsevier Ltd.
1. Introduction

Ceramic materials typically exhibit high hardness, high elastic
stiffness, and low ductility relative to other engineering materials
such as metals. Of interest in the present paper is the behavior of
polycrystalline ceramics at conditions pertinent to ballistic impact:
high loading rates (e.g., strain rates on the order of 105/s) and high
pressures (e.g., up to several to tens of GPa). The mechanical
response of a polycrystalline ceramic under such conditions is
dictated by bulk properties of its crystal constituents (e.g., density
and elastic coefficients) as well as fracture behavior. Depending on
the particular ceramic and loading regime, fracture can be trans-
granular and/or intergranular. Interactions among fractured and
fragmented grains are thought to strongly affect shear strength
behavior of damaged ceramics (Shockey et al., 1990; Curran
et al., 1993; Gailly and Espinosa, 2002). Under severe loading, com-
plete pulverization may occur; the comminuted ceramic may exhi-
bit behavior approaching that of its powder form (Shih et al., 1998).

A general consensus on correlation between mechanical prop-
erties of ceramics and dynamic performance in high rate applica-
tions (e.g., resistance to failure, penetration, or perforation)
apparently does not exist; relative importance of various proper-
ties may depend on the particular application. However, experi-
ments do suggest that certain properties can strongly affect
Ltd.

+1 410 2782460.
Clayton).
dynamic performance. These properties include hardness, elastic
stiffness, fracture toughness, unconfined compressive strength, dy-
namic shear strength, and failure probabilities (e.g., Weibull
parameters) (Sternberg, 1989; Shockey et al., 1990; Curran et al.,
1993; Gailly and Espinosa, 2002; Ray et al., 2007; Leavy et al.,
2010). Experiments indicate that ceramics exhibit an increase in
shear strength with increasing compressive pressure or confine-
ment (Heard and Cline, 1980; Chen and Ravichandran, 2000). After
fractures occur, dilatation accompanies sliding of mismatched or
misaligned crack faces relative to one another. Increasing pressure
resists this dilatation, increasing the amount of shear stress re-
quired to enable deviatoric deformation (Curran et al., 1993). This
phenomena, which also occurs in rocks and minerals, can be inter-
preted in the context of Mohr–Coulomb or frictional sliding models
(Chen and Ravichandran, 2000; Clayton, 2010a).

Efforts towards computational modeling of macroscopic behav-
ior of polycrystalline ceramics under high strain rates and pres-
sures representative of ballistic events have been underway for
over three decades (Wilkins, 1978; Curran et al., 1993). More re-
cently, mesoscale models, in which the behavior of each grain
within a polycrystal is addressed explicitly, have provided insight
into effects of microstructural properties – e.g., grain sizes and
shapes, anisotropic elasticity and/or plasticity, local fracture prop-
erties, and distributions of second phases – on deformation and
failure behavior of polycrystalline solids (Espinosa and Zavattieri,
2003a,b; Clayton and McDowell, 2004; Clayton, 2005a,b, 2006a,b;
Vogler and Clayton, 2008; Foulk and Vogler, 2010; Kraft and
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Molinari, 2008; Kraft et al., 2008; Zhang et al., 2005b,a; Kraft et al.,
2010; Gazonas et al., 2010). Much earlier work focused on two-
dimensional simulations; however, recent advances in computa-
tional hardware (e.g., processor speed and numbers of parallel pro-
cessors), finite element software (Jung, 2010), and microstructure
rendering and meshing technologies (Rollett and Manohar, 2004;
Rollett et al., 2007) now enable fully resolved simulations of
three-dimensional polycrystalline microstructures incorporating
nonlinear material behavior, interfacial fracture, and multi-body
contact (Kraft et al., 2010; Gazonas et al., 2010).

Three-dimensional simulations of polycrystalline microstruc-
tures are presented in this paper. Specific ceramics under consider-
ation include silicon carbide (6H polytype as most prevalent in SiC-
N, hexagonal structure) and AlON (spinel, cubic structure). Detailed
descriptions and continuum models of behavior of single crystals
of each material with supporting references are given elsewhere
(Clayton, 2010c, 2011a). Notably, polycrystalline AlON of adequate
quality is transparent, while polycrystalline SiC is opaque. How-
ever, SiC typically exhibits a higher elastic stiffness, higher fracture
strength, and higher fracture toughness than AlON. Two synthetic
microstructures are considered: one consisting of 50 grains, the
other consisting of 126 grains. As discussed in more detail later,
these microstructures are idealized in the sense that they do not
correspond to reconstructions of actual specimens of the ceramics
under present consideration; rather, they are synthesized from
numerical algorithms incorporating grain growth or Voronoi meth-
ods. Synthetic microstuctures of this sort are typically used when
digital reconstructions of actual microstructures are not available
(Zhang et al., 2005b; Clayton, 2009b; Foulk and Vogler, 2010).
Properties of SiC or AlON are assigned to each microstructure in
different simulations, and results of various simulations enable
comparison between materials holding grain morphology fixed.
Nonlinear anisotropic elasticity represents single crystals within
each polycrystal. Intergranular fracture is addressed via a multi-
body contact algorithm (Jung, 2010), whereby each grain is treated
as a distinct solid body. The contact algorithm incorporates a cohe-
sive law enabling tensile and shear fracture and accounting for
fracture strength and surface energy of separation. Various initial
lattice orientation distributions enable a study of effects of elastic
anisotropy, while various loading directions (e.g., shear or com-
pression along different axes) provide insight into effects of grain
morphology and enable quantification of anisotropy of failure
behavior.

Simulations consider the following boundary conditions: uniax-
ial strain compression, uniaxial stress compression, and shear with
varying magnitudes of superimposed compressive pressure. All
simulations are conducted at high loading rates (105/s). Uniform
strain rates are assigned throughout each microstructure as an ini-
tial condition. Results from uniaxial strain and stress simulations
are compared with available experimental data. However, the
present simulations enable a study of specimens of sizes smaller
(in terms of number of grains) than those accessible by standard
high-rate experiments (e.g., traditional plate impact and Kolsky
bar tests). Shear boundary conditions considered here do not cor-
respond to known dynamic experiments on the materials of pres-
ent interest and hence provide new insight into dynamic shear
strength behavior, with and without pressure. Of particular inter-
est in the present study are the following physical phenomena:
dependence of dynamic shear strength on pressure, sensitivity of
peak strength to grain morphology and elastic anisotropy, and
dependence of statistical variations in peak strength on specimen
size (i.e., number of grains) and local material properties. Pres-
sure-dependent strength statistics from mesoscale simulations
can be used to provide parameters entering macroscopic constitu-
tive models for ceramic material behavior incorporating statistical
failure criteria (Brannon et al., 2007, 2009; Leavy et al., 2010; Gra-
ham-Brady, 2010).

This paper is structured as follows. Models for elastic behavior
of single crystals, fracture of interfaces, and requisite material
properties are described in Section 2. Microstructural representa-
tions (e.g., finite element meshes) are described in Section 3.
Numerical simulations, important results, and limitations of the
modeling approach are described in Section 4. Conclusions follow
in Section 5.

Notation of continuum mechanics is used, primarily following
index notation for vectors and higher-order tensors which is con-
venient in the context of anisotropic elasticity. Background on
the subject of nonlinear anisotropic elasticity of crystals can be
found in several books/monographs (Wallace, 1972; Thurston,
1974; Clayton, 2011b). For simplicity of presentation, all compo-
nents of vectors and tensors are referred to a fixed set of Cartesian
indices in both reference and spatial configurations of the body.
Indices corresponding to the reference configuration are written
in capitals, while those corresponding to the spatial configuration
are written in lower case. Einstein’s summation applies for re-
peated indices, e.g., aAbA ¼ a1b1 þ a2b2 þ a3b3.

2. Theory and constitutive models

Governing equations for elastic behavior of single crystals com-
prising polycrystalline aggregates are provided. Models for inter-
granular fracture are described. Properties for bulk single crystals
and interfaces are tabulated for SiC and AlON ceramics.

2.1. Nonlinear anisotropic elasticity

The behavior of intact single crystals is governed by traditional
balance laws of nonlinear continuum mechanics (Thurston, 1974;
Clayton, 2011b). Letting t denote time, spatial ðxaÞ and material
ðXAÞ coordinates are related by the smooth, invertible, and one-
to-one (at any given time) functions

xa ¼ xaðXA; tÞ; XA ¼ XAðxa; tÞ: ð1Þ

The deformation gradient and its inverse are

FaA ¼ @xa=@XA ¼ @Axa; F�1
Aa ¼ @XA=@xa ¼ @aXA; ð2Þ

where partial coordinate differentiation (t fixed) obeys

@Að�Þ ¼ @ð�Þ=@XA ¼ ½@ð�Þ=@xa�½@xa=@XA� ¼ @að�ÞFaA: ð3Þ

Volume element dV in the spatial configuration is related to its
counterpart dV0 in the reference configuration by the Jacobian
determinant J:

J ¼ dV=dV0 ¼ detðFaAÞ ¼
1
6
�abc�ABCFaAFbBFcC ð4Þ

with inverse

J�1 ¼ 1=J ¼ detðF�1
Aa Þ ¼

1
6
�abc�ABCF�1

Aa F�1
Bb F�1

Cc : ð5Þ

Permutation symbols are �abc and �ABC . The following identities ap-
ply (Clayton, 2011b):

@J=@FaA ¼ JF�1
Aa ; @AðJF�1

Aa Þ ¼ 0;

@J�1=@F�1
Aa ¼ J�1FaA; @aðJ�1FaAÞ ¼ 0:

ð6Þ

Let the following notations denote the material time derivative:

dð�Þ=dt ¼ ð�Þ
�
¼ ½@ð�Þ=@t�jXA

¼ ½@ð�Þ=@t�jxa
þ va@að�Þ: ð7Þ

Particle velocity and acceleration, respectively, are

va ¼ _xa; aa ¼ _va ¼ €xa: ð8Þ
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The spatial velocity gradient and its trace obey

@bva ¼ _FaAF�1
Ab ; @ava ¼ _JJ�1: ð9Þ

Cauchy stress rab, first Piola–Kirchhoff stress PaA, and second Piola–
Kirchhoff stress SAB are related by

rab ¼ J�1PaBFbB ¼ J�1FaASABFbB: ð10Þ

Conservation laws for mass, linear momentum (with no body
forces), and angular momentum are

q0 ¼ qJ; @APaA ¼ q0aa; PaBFbB ¼ PbBFaB; ð11Þ

where q0 and q are referential and spatial mass densities. Using (6),
(9), and (10),

_q ¼ �q@ava; @brab ¼ qaa; rab ¼ rba: ð12Þ

Assuming adiabatic conditions, the balance of energy and entropy
inequality are

_U ¼ PaA
_FaA; _g P 0; ð13Þ

where U and g are entropy and internal energy per unit reference
volume.

A hyperelastic material response is assumed:

U ¼ UðFaA;gÞ; @U=@FaA ¼ PaA; @U=@g ¼ h; ð14Þ

with h the temperature. From the chain rule and (14),

_U ¼ PaA
_FaA þ h _g; ð15Þ

which is compatible with adiabatic assumption (13) at finite tem-
perature only when _g ¼ 0; i.e., assumptions of adiabatic conditions
and hyperelastic response correspond to isentropic conditions.
Thus, dependence of internal energy on entropy is dropped hence-
forward, and thermomechanical quantities are assumed to be mea-
sured at fixed entropy (e.g., the usual ‘‘adiabatic’’ elastic coefficients
measured ultrasonically).

Define symmetric Lagrangian elastic strain EAB and deformation
CAB as

EAB ¼
1
2
ðCAB � dABÞ; CAB ¼ FaAFaB; detðCABÞ ¼ J2; ð16Þ

with dAB Kronecker’s delta. The internal energy at fixed entropy is, to
within an arbitrary constant and to third order in strain (Thurston,
1974; Clayton, 2011b),
Table 1
Properties for SiC and AlON single crystals.

Property Value (SiC) Referenc

Structure 6H polytype
Phase a
Crystal system Hexagonal
Mass density q0 3227 kg=m3 Leavy et
Elastic constant C11 501 GPa Kamitan
Elastic constant C12 112 GPa
Elastic constant C44 161 GPa
Elastic constant C13 52 GPa
Elastic constant C33 549 GPa
Pressure derivative dC11=dp 3.8 Davydov
Pressure derivative dC12=dp 4.0
Pressure derivative dC44=dp �0.2
Pressure derivative dC13=dp 4.0
Pressure derivative dC33=dp 3.8
No. independent Cabv 10
Bulk modulus K 222 GPa Clayton
Shear modulus G 194 GPa
Poisson’s ratio m 0.16
Shear wave speed

ffiffiffiffiffiffiffiffiffiffiffiffi
G=q0

p
7.75 km/s

Zener anisotropy 2C44=ðC11 � C12Þ 0.83
Typical grain size 5 lm Leavy et
U ¼ 1
2!

@2U
@EAB@ECD

�����
EIJ¼0

EABECD þ
1
3!

@3U
@EAB@ECD@EEF

�����
EIJ¼0

EABECDEEF

¼ 1
2

CABCDEABECD þ
1
6

CABCDEFEABECDEEF : ð17Þ

Second- and third-order elastic constants at the unstressed refer-
ence state are CABCD and CABCDEF . In Voigt’s notation (Thurston,
1974; Clayton, 2011b), where Greek indices run from 1 to 6,
CABCD $ Cab and CABCDEF $ Cabv. Noting from (10) and the symmetry
of EAB and SAB that

PaA¼ @U=@FaA¼ð@U=@EBCÞð@EBC=@FaAÞ¼ ð@U=@EBAÞFaB¼ FaBSBA; ð18Þ

it follows that the second Piola–Kirchhoff stress

SAB ¼ CABCDECD þ
1
2

CABCDEFECDEEF : ð19Þ

Properties for SiC and AlON single crystals are listed in Table 1.
Third-order elastic constants are tedious to measure and have been
reported for relatively few substances. For many single crystals,
including those of interest here, full sets of third-order elastic
constants have not been reported in the literature. However,
third-order elastic constants can be estimated as follows (Clayton,
2010c, 2011a), presuming pressure derivatives of elastic coefficients
at the reference state are available. First, note the following identity
(Clayton, 2011b):

@J=@EAB ¼ 2@J=@CAB ¼ J�1@ðJ2Þ=@CAB ¼ J�1@ detðCABÞ=@CAB

¼ J�1 detðCABÞC�1
BA ¼ JC�1

AB : ð20Þ

Now, assume that the tangent elastic coefficients (denoted with a
superposed ^) depend only on volume change (via J) and not on
deviatoric deformation:

bCABCDðJÞ ¼ @2U=@EAB@ECD: ð21Þ

Using (20), and letting bK ¼ �Vðdp=dVÞ ¼ �Jðdp=dJÞ denote the tan-
gent bulk modulus with p ¼ �raa=3 the Cauchy pressure,

@bCABCD=@EEF ¼ ðdbCABCD=dJÞð@J=@EEFÞ

¼ ðdbCABCD=dpÞðdp=dJÞð@J=@EEFÞ

¼ �ðdbCABCD=dpÞðbK=JÞðJC�1
EF Þ

¼ �bK ðdbCABCD=dpÞC�1
EF : ð22Þ
e Value (AlON) Reference

Spinel
c
Cubic

al. (2010) 3714 kg=m3 Graham et al. (1988)
i et al. (1997) 301 GPa Gazonas et al. (2010)

155 GPa
174 GPa
(¼ C12)
(¼ C11)

(2004) 5.1 Batyrev et al. (2011)
2.7
1.2
(¼ dC12=dp)
(¼ dC11=dp)
6

(2010c) 204 GPa ðC11 þ 2C12Þ=3
134 GPa (Voigt average)
0.23
6.01 km/s

2.38
al. (2010) 200 lm McCauley et al. (2009)
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Repeating (22) over alternating pairs of indices (AB;CD; EF), evaluat-
ing at the reference state where C�1

AB ¼ dAB;dbCABCD=dJ ¼ dCABCD=dJ,bK ¼ K (i.e., dropping the ^ notation at the reference state) and
averaging the result provides the following estimate of third-order
elastic constants with requisite major and minor symmetries:

CABCDEF � �ðK=3Þ½ðdCABCD=dpÞdEF þ ðdCCDEF=dpÞdAB

þ ðdCEFAB=dpÞdCD�: ð23Þ

Application of (23) to single crystals of alumina (Al2O3), a material
for which @Cab=@p and Cabv are known (Hankey and Schuele, 1970;
Clayton, 2009a, 2010b) provides a coarse yet reasonable estimate of
11 of its 14 third-order elastic constants. Application of (23) to sin-
gle crystals of SiC provides an accurate depiciton of the hydrostat
(Clayton, 2010c). As demonstrated in previous modeling efforts
for SiC (Clayton, 2010c) and AlON (Clayton, 2011a), third-order
elastic constants enable description of the increase in tangent elas-
tic stiffness that accompanies decreasing volume. The exact rela-
tionship (Thurston et al., 1966) @CABCD=@p ¼ �SEFGGCABCDEF , with
SABCD the compliance, provides an insufficient number of equations
for determination of all third-order constants.

2.2. Fracture

A cohesive zone approach is used to model intergranular frac-
ture. Let tn

a and tt
a denote traction vector components normal and

tangential to a potential fracture site with unit outward normal
components na:

tn
a ¼ ðrbcnbncÞna; tt

a ¼ rabnb � ðrbcnbncÞna;

jtn
a j ¼

ffiffiffiffiffiffiffiffi
tn

atn
a

q
; jtt

aj ¼
ffiffiffiffiffiffiffiffi
tt

att
a

q
:

ð24Þ

Many cohesive laws have been investigated in previous works on
heterogeneous polycrystalline solids (Espinosa and Zavattieri,
2003a,b; Clayton and McDowell, 2004; Clayton, 2005a,b; Kraft
and Molinari, 2008; Kraft et al., 2008; Vogler and Clayton, 2008;
Foulk and Vogler, 2010; Kraft et al., 2010). A simple irreversible
cohesive law is prescribed in the present work, with the same func-
tional form and parameters for normal and tangential separations
dn and dt . Specifically, separation is possible after a critical initiation
traction of magnitude tc is attained. The interface then maintains a
constant cohesive strength until critical separation distance dc is
reached. Mathematically,

dn¼0$jtn
a j< tc; 0< dn=dc <1$jtn

a j ¼ tc; dn=dc P 1$jtn
a j ¼0;

dt ¼0$jtt
aj< tc; 0< dt=dc <1$jtt

aj ¼ tc; dt=dc P 1$jtt
aj ¼0:

ð25Þ

Normal separation only occurs for tensile normal stress, i.e., for
tn

ana > 0; interpenetration of matter is prohibited. After complete
separation, interactions between interfaces are addressed via a mul-
ti-body contact algorithm (Jung, 2010) enabling sliding between
faces but no interpenetration. Atomic bonds are considered irre-
versibly broken when either dn or dt exceeds dc; i.e., once complete
fracture occurs in any direction at a given referential location, cohe-
sive strength is lost in all directions at that location. The advantage
of cohesive law (25) is its simplicity: only two parameters, which
can be estimated from macroscopic fracture measurements, are
needed. Coupling does not exist between normal and tangential
contributions to fracture energy in later Eq. (26): surface energy C
is the same for pure normal or pure tangential fracture, but the total
surface energy associated with an interface undergoing mixed
mode fracture may exceed C. As discussed later in Section 4, (25)
produces an adequate representation of macroscopic stress–strain
and failure behaviors of ceramic polycrystals under present
consideration. More complex cohesive laws incorporating
piecewise-linear traction-separation relationships with various
slopes were investigated; alternative formulations did not offer
any apparent advantages with regards to numerical stability or rep-
resentation of macroscopic fracture strength but often would re-
quire specification of experimentally unknown parameters.

Differently from many previous studies (Espinosa and Zavattieri,
2003a,b; Clayton and McDowell, 2004; Clayton, 2005a,b; Vogler
and Clayton, 2008; Foulk and Vogler, 2010), distinct cohesive finite
elements are not used in the present numerical framework. In
other words, finite element meshes are not seeded a priori with
interfacial elements. Rather, the cohesive constitutive law (25) is
incorporated directly into the contact algorithm (Jung, 2010), and
each individual grain within a polycrystalline aggregate is treated
as a distinct solid body from the outset of a given numerical
simulation. Prior to attainment of the critical normal or tangential
traction, interfaces are rigidly tied, and hence artificial increases
in compliance prior to fracture initiation are avoided. Once the
critical traction is attained and separation commences, forces
resulting from the cohesive traction-separation law are effectively
applied to appropriate nodes by the contact algorithm that com-
putes node-face interactions (Jung, 2010, Ch. 7, pp. 377–448).

Properties are listed for SiC and AlON in Table 2, with critical
strength and separation distance computed using experimental
(macroscopic) values of flexure strength and static fracture tough-
ness. In the context of linear elastic fracture mechanics, fracture
toughness j, surface energy C, critical strength tc , critical separa-
tion dc , and cohesive zone length lc are related by (Espinosa and
Zavattieri, 2003b; Clayton, 2005b; Kraft et al., 2010)
j2ð1� m2Þ=E ¼ 2C ¼ tcdc; lc � pEC=½ðtcÞ2ð1� m2Þ�: ð26Þ
Young’s modulus E ¼ 9KG=ð3K þ GÞ and Poisson’s ratio
m ¼ ð3K � 2GÞ=ð6K þ 2GÞ. Also shown for purposes of comparison
in Table 2 are experimentally measured spall strengths. Spall
strengths are comparable to flexure strengths, though the former
may vary considerably with impact pressure (Dandekar and
Bartowski, 2001; Cazamias et al., 2001) and may also vary from
sample to sample tested at similar impact pressures due to brittle-
ness and possible flaws in the material.

The present study incorporates uniform grain boundary
strength and frictionless post-fracture sliding between grain
boundary facets. It is understood that real ceramic microstructures
should exhibit variation among fracture behaviors (e.g., in func-
tional forms of cohesive laws as well as in fracture strengths and
energies) at interfaces depending on grain misorientation, grain
boundary curvature, impurities, and pre-existing defects. Thus,
the assumption of uniform grain boundary behavior is an idealiza-
tion, albeit one that has been used frequently in other numerical
studies of heterogeneous polycrystalline solids (Clayton and
McDowell, 2004; Vogler and Clayton, 2008; Foulk and Vogler,
2010; Kraft et al., 2010). Variable grain boundary properties can
strongly influence overall behavior of ceramics (Espinosa and
Zavattieri, 2003b; Kraft and Molinari, 2008; Kraft et al., 2008);
however, assignment of variable properties as an initial condition
is problematic since experimental measurements of mesoscopic
grain boundary strength distributions are scarce if not nonexistent.
A distribution of strengths at the mesoscale could be assigned so
that homogenized model results over many simulations would
match macroscopic failure statistics (e.g., a Weibull modulus).
However, such an approach would reduce model calculations of
failure statistics to parameter fits rather than predictive results.
On the other hand, assignment of uniform grain boundary proper-
ties enables simulation results to provide insight of other sources
of variability, such as grain morphology, loading conditions, and
elastic anisotropy, on predicted failure statistics.



Table 2
Properties for SiC and AlON interfaces.

Property Value (SiC) Reference Value (AlON) Reference

Fracture (flexure) strength tc 0.570 GPa Leavy et al. (2010), LaSalvia et al. (2010) 0.306 GPa Corbin (1989)
Fracture toughness j 5.1 MPa m1=2 2.5 MPa m1=2

Surface energy C 28.1 J/m2 Eq. (26) 9.0 J/m2 Eq. (26)

Critical separation dc 0.10 lm 0.06 lm

Cohesive length lc 126 lm 105 lm
Spall strength 0.54–1.3 GPa Dandekar and Bartowski (2001) 0.14–1.7 GPa Cazamias et al. (2001)
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The assumption of local frictionless contact enables smooth
faces to slide freely past one another. However, as will be demon-
strated later in Section 4, because grain boundaries are interlock-
ing, grains cannot slide indefinitely without expansion normal to
the direction of motion and generation of free volume, i.e., dilata-
tion (Curran et al., 1993; Clayton, 2010a). This phenomenon, due
simply to grain geometry, leads to an increase in macroscopic or
average shear stress with confinement or compressive pressure,
in what may be interpreted as sliding ‘‘friction’’ in the sense of
macroscopic Mohr–Coulomb models (Chen and Ravichandran,
2000), even though microscopically contact is treated as friction-
less. Locally frictionless contact was also assumed in a previous
computational study of shock compression and spall of SiC (Foulk
and Vogler, 2010). However, this approach represents a limiting
case since local microscopic friction could be non-negligible. Previ-
ous two dimensional simulations (Kraft et al., 2008) demonstrated
that as the sliding friction coefficient between failed grain bound-
aries increases, compressive peak strength and its sensitivity to
confining stress also increase. As noted later in Section 4.4, omis-
sion of friction may contribute to under-prediction of shear
strength in the present simulations of the high pressure response
under uniaxial strain loading, wherein contributions of frictional
forces proportional to normal pressures at interfaces could become
important.

As assumed in previous fracture simulations of ceramic poly-
crystals including Al2O3 (Espinosa and Zavattieri, 2003a; Espinosa
and Zavattieri, 2003b), SiC (Foulk and Vogler, 2010), and AlON
(Gazonas et al., 2010), transgranular (i.e., cleavage) fracture is not
addressed. This is a reasonable assumption for certain varieties of
SiC (e.g., SiC-N) that contain additives that segregate at grain
boundaries, leading to a tendency for grain boundary fracture over
cleavage and corresponding to increased toughness (Faber and
Evans, 1983; Shih et al., 1998; Lee et al., 2005; Vargas-Gonzalez
et al., 2010). On the other hand, this assumption may be less phys-
ically reasonable for AlON, in which cleavage fractures have been
observed (McCauley et al., 2009).
3. Microstructure modeling

Synthetic microstructures representative of generic polycrystals
with equi-axed grains are considered in the present work, in the
absence of serial section and/or electron back-scatter diffraction
(EBSD) data that could be used to recreate true microstructures
from material specimens (Brahme et al., 2006; Rollett et al.,
2007). Efforts are presently underway towards reconstruction of
microstructures from actual ceramic specimens. In the present ap-
proach, volume meshes (tetrahedral elements) are created from
stereolithographic (STL) files of surface representations of grains
comprising a given microstructure. Surface meshes are generated
for three-dimensional microstructures produced using a Monte
Carlo grain growth algorithm (Rollett and Manohar, 2004). A con-
formal triangular surface mesh covers each crystal volume, with an
interpolation method used where a triangle separates two materi-
als (Kraft et al., 2010). A three dimensional volume mesh of tetra-
hedral continuum finite elements is then created to fill the surface
mesh of every crystal.

Two microstructures are considered: microstructure I, with 50
grains; and microstructure II, with 126 grains. Each aggregate is
a cube of dimensions L� L� L, where L ¼ 1 mm. Absolute dimen-
sions of each aggregate are prescribed to be equal to enable reason-
able comparison of dynamic finite element results between
microstructures in which traction-free boundary conditions are
prescribed on some external surfaces. If, on the other hand, differ-
ent sized specimens were to be compared, differences in deforma-
tion and failure behavior could, in many scenarios, be attributed to
differences in dimensions of external boundaries of the aggregate.
For example, a planar crack originating at one edge of the aggre-
gate would propagate (at constant speed) in a shorter time across
a smaller specimen than a larger specimen, leading to earlier fail-
ure in the former case. Times for elastic release waves to traverse
different-sized specimens would also differ in dynamic simula-
tions. By using the same absolute size L for each aggregate, any
such issues associated with external boundaries are the same in
each simulation, so that results obtained from different micro-
structures can be meaningfully compared. As discussed later in
Section 4.3, periodic boundary conditions might be expected to
provide more realistic depiction of behavior of grain aggregates
embedded inside a much larger sample of material, as considered
elsewhere in two-dimensional studies of ceramic microstructures
(Espinosa and Zavattieri, 2003a,b).

Microstructures are shown in Fig. 1. Average grain sizes for each
microstructure can be estimated as L=501=3 � 270 lm (microstruc-
ture I) and L=1261=3 � 200 lm (microstructure II), which are repre-
sentative of AlON (McCauley et al., 2009) but are much larger than
standard SiC-N (Lee et al., 2005; Leavy et al., 2010). However, other
varieties of polcrystalline SiC with large grains can exhibit grain
sizes of this order of magnitude (Rice et al., 1994). As mentioned
in Section 1, the same microstructures are used to represent both
SiC and AlON polycrystals in subsequent dynamic finite element
simulations. Use of the same meshes for each material enables
quantification of differences in deformation and failure behavior
by varying material properties (i.e., mass density, elasticity, cohe-
sive strength, and cohesive energy) while holding the microstruc-
ture fixed. Differences resulting from grain morphology are
studied by compressing and/or shearing each microstructure in
different (e.g., orthogonal and forward/reverse) directions. Finite
element meshes contain between 1� 106 and 2� 106 tetrahedral
elements. Mesh refinement is sufficient to resolve grain boundary
surface morphology and cohesive zone lengths (Table 2) and is
comparable to that considered in previous polycrystal fracture
simulations in two and three dimensions (Clayton, 2005a,b; Kraft
and Molinari, 2008; Kraft et al., 2008, 2010; Gazonas et al.,
2010). Cumulative grain size distributions for each microstructure
are shown in Fig. 2. Let Vg denote the volume V of a particular
grain, and define that grain’s size as V1=3

g . The cumulative number
fraction (ordinate of Fig. 2) is defined as the number of grains with
V1=3

g 6 V1=3 divided by the total number of grains in the microstruc-
ture. The abscissa of Fig. 2 is V1=3 normalized by the average grain
size in the microstructure. Grain sizes are somewhat more uniform



Fig. 1. Finite element representations of polycrystalline aggregates: (a) micro-
structure I (50 grains) (b) microstructure II (126 grains).

Fig. 2. Normalized cumulative grain size distributions.
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in microstructure I, while microstructure II exhibits greater vari-
ability (i.e., a wider distribution) of grain sizes. Normalized distri-
butions are qualitatively similar to those observed for Hexoloy
SiC and SiC-N (Vargas-Gonzalez et al., 2010).
In all simulations discussed in Section 4, random initial lattice
orientations are used for grains comprising each microstructure.
Different sets of random initial orientations are investigated in
some simulations. Lattice orientation affects model results through
the dependence of anisotropic elastic coefficients (CABCD;CABCDEF ) on
crystallographic orientation in the reference configuration.

4. Mesoscale simulations

Dynamic simulations for different boundary and initial condi-
tions are described in what follows: uniaxial strain compression
(Section 4.1), uniaxial stress compression (Section 4.2), and shear
(Section 4.3) with and without superimposed compressive stress.
Results are then summarized in Section 4.4, with limitations of
the current approach and areas for further research identified.

Data from numerous mesoscale simulations are collected and
analyzed, approximately 180 simulations in total. The SIERRA

(Jung, 2010) Lagrangian finite element code with explicit dynamics
is used. Each simulation is executed in parallel mode on 32 proces-
sors for 24 h wall-clock time, for a total number of cpu-hours con-
sumed of 180� 32� 24 � 1:4� 105.

4.1. Uniaxial strain

Results for dynamic uniaxial strain loading are reported first.
Let X denote the referential direction of loading, with Y and Z
denoting orthogonal directions, and with a corner of the cubic
specimen located initially at the origin ðX;Y ; ZÞ ¼ ð0;0;0Þ. Velocity
boundary conditions and nonzero initial conditions for uniaxial
straining in the X-direction are, respectively,

vx ¼ � _�X along X ¼ L;

vy ¼ 0 along Y ¼ 0; L;

vz ¼ 0 along Z ¼ 0; L;

vx ¼ vy ¼ vz ¼ 0 along X ¼ 0;

ð27Þ

vxðt ¼ 0Þ ¼ � _�X $ @xvxðt ¼ 0Þ ¼ � _�: ð28Þ

The imposed uniaxial strain rate is _� ¼ 105/s. Initial conditions (28)
impose a uniform initial velocity gradient throughout the domain; a
shock wave would arise, on the other hand, if velocity boundary
conditions (27) were to be applied to a body initially at rest. Uniax-
ial strain simulations were also performed via loading in orthogonal
Y and Z directions, with analogous boundary and initial conditions.
Under these loading conditions, volume V of the aggregate is related
to its initial volume V0 via V ¼ ð1� _�tÞV0.

Because the material is unstrained at t ¼ 0, stress is zero every-
where initially. The strain rate (symmetric part of the velocity gra-
dient @bva) is initially nonzero and constant throughout the
microstructure. If these conditions were to be applied to a homoge-
neous linear elastic material, stresses would increase linearly with
time. In the present simulations, stresses may emerge heteroge-
neously and nonlinearly with t > 0 as a result of elastic anisotropy
and elastic nonlinearity, fracture, contact, and stress wave interac-
tions. The authors are unaware of any experimental configuration
that exactly replicates these uniform initial and boundary condi-
tions. Similar comments apply for other initial and boundary con-
ditions considered later in Section 4.2 and Section 4.3.

Fig. 3 shows axial stress contours (r ¼ �rxx, positive in com-
pression) in SiC (Fig. 3(a)) and AlON (Fig. 3(b)). In each case shown,
a 50-grain microstructure is deformed to 5% reduction in volume,
i.e., V=V0 ¼ 0:95 via compression along the X-direction. Stresses
are significantly higher in SiC than AlON as a result of the larger
elastic stiffness and higher fracture strength and toughness in the
former (Tables 1 and 2). In each microstructure, cracks associated
with axial splitting appear, typical behavior for brittle materials



Fig. 3. Axial stress r (positive in compression) for 50-grain microstructures
subjected to uniaxial strain at volume V=V0 ¼ 0:95: (a) SiC (b) AlON.
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with low Poisson’s ratio (Chen and Ravichandran, 2000). Stress
concentrations are visible along certain grain boundaries and triple
junctions in both materials.

Average axial stress R is defined as the surface integral

R ¼ ð1=AÞ
Z

A
t̂ndA; ð29Þ

where t̂n is the magnitude of the component of traction normal to
loaded surface A. For example, for uniaxial strain along the X-direc-
tion, t̂n ¼ jrxxnxj ¼ jrxxj along the surface defined by X ¼ L with area
A ¼ L2. Average axial stresses are shown in Fig. 4(a) and (b) for respec-
tive microstructures of SiC and AlON loaded along the X-direction.
Results are compared for specimens in which fracture is prohibited
(i.e., permanently tied contact at grain boundary interfaces), for spec-
imens with different random grain orientation distributions (labeled
orientation 1 and orientation 2), and for nonlinear and linear elastic
constitutive models. Nonlinear elastic models incorporating both
second- and third-order elastic constants are used unless simulation
cases are labeled as ‘‘linear’’. For linear models, only anisotropic sec-
ond-order elastic constants are implemented, and all third-order
elastic constants are set to zero. For each material, simulations with-
out fracture exhibit the largest stiffness. Average stresses from simu-
lations incorporating nonlinear elasticity with different lattice
orientations are nearly indistinguishable in each of Fig. 4(a) and (b).
Also in each material, differences between nonlinear and linear elas-
tic models become apparent at larger compressions (e.g., at
V=V0 K 0:97). For the same material, lattice orientation, and grain
geometry, nonlinear elasticity provides for a higher compressive
stress than linear elasticity because of the increasing elastic stiff-
ness with increasing compressive pressure reflected by the third-
order elastic constants.

Average axial stresses for SiC and AlON microstructures with
various lattice orientations strained uniaxially along different
directions are compared to experimental shock compression data
in Fig. 5(a) and (b). Note that uniaxial strain compression at a rate
of _� ¼ 105/s is typically deemed representative of plate impact
experiments (Grady, 1998; Clayton, 2011a), though the stress state
is not uniform in shock compression tests. A uniaxial strain condi-
tion with a constant strain rate of _� ¼ 105/s was used elsewhere
(Holmquist and Johnson, 2002) to calibrate a macroscopic ceramic
strength model to plate impact data. Constitutive models used in
the present work for nonlinear elasticity, cohesive fracture, and
contact include no intrinsic rate dependence. Rate effects arise only
from time scales associated with inertia (i.e., elastic wave speeds in
anisotropic grains) and crack propagation velocities. Experimental
data shown in Fig. 5 correspond to shock compression, wherein the
strain rate and stress state exhibit effective jump discontinuities
across the shock front. On the other hand, model results are ob-
tained for the more homogeneous uniaxial strain loading path dic-
tated by (27) and (28). Differences between model predictions and
experimental data would be expected due to the path dependent
nature of the fracture process, e.g., local fractures induced by prop-
agation of a shock front are omitted in the simulations.

Predicted average stresses for SiC shown in Fig. 5(a) are very
similar for all orientations and all loading directions. Except for
the first experimental data point shown (which corresponds to
the elastic regime), predicted stresses are lower than experimental
plate impact data (Feng et al., 1998; Yuan et al., 2001). Possible rea-
sons for discrepancies are discussed further in Section 4.4. Pre-
dicted average stresses for AlON shown in Fig. 5(b) are also very
similar for all orientations and all loading directions. Furthermore,
predictions for AlON closely follow the experimental plate impact
data (Cazamias et al., 2001; Vaughan et al., 2001; Dandekar et al.,
2007).

Tables 3 and 4 report average shear stresses for SiC and AlON,
respectively. Simulation cases are tabulated in Table 5. Average
shear stress s and average pressure P follow the usual definitions
from shock compression science (Feng et al., 1998; Grady, 1998;
Dandekar et al., 2007; Clayton, 2011a,b):

s ¼ 1
2
ðR1 � R3Þ; P ¼ �1

3
ðR1 þ R2 þ R3Þ; ð30Þ

where R1;R2, and R3 are maximum, intermediate, and minimum
principal stresses for the polycrystalline aggregate computed anal-
ogously to (29). Shear stress increases monotonically with compres-
sive strain in all simulations. In experiments on SiC (Feng et al.,
1998), shear strength increases with increasing compressive strain
for V=V0 P 0:95, while in experiments on AlON (Dandekar et al.,
2007), shear strength decreases for compressive strain
V=V0 6 0:98. Agreement between model and experiment is closer
at larger compressions. Missing entries in Tables 3 and 4 indicate
either unreported experimental data or simulations that were ter-
minated due to numerical instabilities prior to attainment of corre-
sponding applied strains. Slight variations in shear strength among
simulations of the same material loaded in different directions or
with different lattice orientations are evident, generally on the



Fig. 4. Average axial stress R for the same microstructures subjected to uniaxial strain along X-direction: (a) SiC (b) AlON.

Fig. 5. Average axial stress R for the same grain structures subjected to uniaxial strain along different directions, and experimental shock compression data: (a) SiC (b) AlON.

Table 3
Predicted and experimental shear stress for SiC in uniaxial strain compression.

Simulation or experiment s [GPa]

V
V0
¼ 0:99 V

V0
¼ 0:98 V

V0
¼ 0:97 V

V0
¼ 0:96 V

V0
¼ 0:95 V

V0
¼ 0:94

Simulation 1 1.49 2.70 3.87 4.97 6.00 6.97
Simulation 2 1.46 2.65 3.77 4.86 5.86 –
Simulation 3 1.48 2.68 3.83 4.92 5.94 –
Simulation 4 1.51 2.78 4.04 5.15 6.31 7.29
Simulation 5 1.49 2.74 3.97 5.09 – –
Simulation 6 1.53 2.84 4.17 – – –
Simulation 7 1.54 2.85 – – – –
Experiment Feng et al. (1998) – 4.18 5.80 6.85 6.95 6.90

Table 4
Predicted and experimental shear stress for AlON in uniaxial strain compression.

Simulation or experiment s [GPa]

V
V0
¼ 0:99 V

V0
¼ 0:98 V

V0
¼ 0:97 V

V0
¼ 0:96 V

V0
¼ 0:95

Simulation 1 0.95 1.74 2.52 3.24 –
Simulation 2 0.93 1.73 2.48 3.19 3.85
Simulation 3 1.05 1.82 2.56 3.26 3.84
Simulation 4 0.91 1.70 2.45 3.20 –
Simulation 5 0.89 1.69 2.42 – –
Simulation 6 0.92 1.77 2.60 3.44 –
Simulation 7 0.98 1.79 2.61 3.35 –
Experiment (Dandekar et al., 2007) 2.0 3.8 – 3.4 3.0
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Table 5
Simulations reported in Tables 3 and 4.

Simulation Load direction Orientation Elasticity

1 X 1 Nonlinear
2 X 2 Nonlinear
3 X 1 Linear
4 Y 1 Nonlinear
5 Y 2 Nonlinear
6 Y 1 Linear
7 Z 1 Nonlinear

Fig. 6. Shear stress: present simulations (nonlinear elasticity and fracture) and
experiments.

Fig. 7. Axial stress r (positive in compression) for 50-grain microstructures
subjected to unconfined axial strain of DL=L0 ¼ 0:02: (a) SiC (b) AlON.
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order of several percent. Linear elastic models do not always
provide an increase in shear stress relative to complementary non-
linear elastic models, in contrast to axial stresses and pressures
which are larger when nonlinear theory is used. Shear stresses
from representative simulations are compared graphically with
experimental data in Fig. 6.

4.2. Unconfined compression

Results for dynamic uniaxial stress loading are reported next.
Let X denote the referential direction of loading, with Y and Z
denoting orthogonal directions, and with a corner of the cubic
specimen located initially at the origin ðX;Y; ZÞ ¼ ð0;0; 0Þ. Bound-
ary conditions and nonzero initial conditions for unconfined com-
pression in the X-direction are, respectively,

vx ¼ � _�X along X ¼ L;

vx ¼ 0 along X ¼ 0; ð31Þ
rabnb ¼ 0 along Y; Z ¼ 0; L;

vxðt ¼ 0Þ ¼ � _�X $ @xvxðt ¼ 0Þ ¼ � _�: ð32Þ

The imposed strain rate is _� ¼ 105/s. Initial conditions (32) impose a
uniform initial velocity gradient throughout the domain. Uniaxial
stress simulations were also performed via loading in orthogonal
Y and Z directions, with analogous boundary and initial conditions.
Under these loading conditions, the average axial strain of the
aggregate is DL=L0 ¼ _�t, positive in compression. Fully free, as op-
posed to periodic, boundary conditions are applied to lateral faces
of the microstructure.

Fig. 7 shows representative axial stress contours (r ¼ �rxx, po-
sitive in compression) in SiC (Fig. 7(a)) and AlON (Fig. 7(b)). In each
case shown, a 50-grain microstructure is deformed to 2% strain, i.e.,
DL=L0 ¼ 0:02 via compression along the X-direction. Stresses are
somewhat higher in SiC than AlON as a result of the larger elastic
stiffness and higher fracture strength and toughness in the former
(Tables 1 and 2). In each microstructure, cracks associated with ax-
ial splitting appear, as do sliding cracks associated with dilatation
(i.e., expansion) in directions orthogonal to the loading direction.
Fractures are more profuse, and stresses are significantly lower,
than those observed in uniaxial strain compression (Section 4.1,
Fig. 3).

Tables 6 and 7 show peak axial stress and corresponding failure
strain data for SiC and AlON microstructures. Nonlinear elasticity
has been used in obtaining all model results shown. Peak axial stress
Rf is defined as the maximum value of average compressive stress R
attained over the duration of an experiment/simulation prior to
strain softening associated with damage/fracture, and
peak strain �f is the corresponding average compressive strain,
i.e., @R=@ðDL=L0Þ � 0 at DL=L0 ¼ �f . Also shown for purposes of com-
parison are peak stress data from Kolsky bar experiments at strain
rates on the order of 103/s (Pickup and Barker, 1997; Wang and
Ramesh, 2004; Paliwal et al., 2008). Predicted failure stresses for
SiC are smaller than experimental values (Pickup and Barker,
1997; Wang and Ramesh, 2004); furthermore, strain rates consid-
ered in the simulations are significantly higher (105/s), and brittle
materials can exhibit an increase in peak compressive strength with
increasing strain rate (Grady, 1998; Chen and Ravichandran, 2000).
Predicted strengths for AlON are comparable to experimental values



Table 6
Peak axial stress and failure strain for unconfined compression, SiC.

Model/experiment Load
direction

Orientation �f

[%]
Rf

[GPa]
Rf =tc

Model X 1 2.43 4.19 7.35
Model Y 1 2.79 4.85 8.51
Model Y 2 2.89 4.82 8.46
Model Z 2 2.80 4.92 8.63
Experiment (Pickup and

Barker, 1997)
– – – 6.72–

8.17
Experiment (Wang and

Ramesh, 2004)
– – – 5.0–

7.5

Table 7
Peak axial stress and failure strain for unconfined compression, AlON.

Model/experiment Load
direction

Orientation �f

[%]
Rf

[GPa]
Rf =tc

Model X 1 3.03 3.24 10.59
Model X 2 3.00 3.13 10.22
Model Y 1 2.89 3.59 11.73
Model Z 1 3.42 3.76 12.28
Experiment (Paliwal

et al., 2008)
– – – 3.0–

4.0
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(Paliwal et al., 2008). Comparing the rightmost columns of Tables 6
and 7, it is clear that predicted unconfined compressive strengths
are not directly proportional to prescribed cohesive strength tc since
the ratio Rf =tc is significantly higher in AlON than in SiC for each re-
ported simulation. Variations in predicted peak strength resulting
from differences in lattice orientation (i.e., orientations 1 and 2) ap-
pear smaller than variations from differences in loading direction
(i.e., X; Y , or Z).

4.3. Shear

Lastly, results for dynamic shear loading with and without
superimposed compressive stress are reported. Let X denote the
referential direction of loading, with Y and Z denoting orthogonal
directions, and with a corner of the cubic specimen located initially
at the origin ðX;Y ; ZÞ ¼ ð0;0;0Þ. Three kinds of boundary and initial
conditions are considered: unconfined shear, confined shear, and
shear+compression. Boundary conditions and nonzero initial con-
ditions for unconfined shear in the X direction on the Y plane are,
respectively,

vx ¼ _cY along Y ¼ L; vx ¼ vy ¼ vz ¼ 0 along Y ¼ 0;

ryyny ¼ 0 along Y ¼ L; rabnb ¼ 0 along X; Z ¼ 0; L;
ð33Þ

vxðt ¼ 0Þ ¼ _cY $ @yvxðt ¼ 0Þ ¼ _c: ð34Þ

The imposed shear strain rate is _c ¼ 105/s; note that this is equal to
twice the imposed deformation rate 1

2 ð@bva þ @avbÞ. Initial condi-
tions (34) impose a uniform initial velocity gradient throughout
the domain. Numerous shear simulations were also performed via
loading in forward and reverse directions on orthogonal Y and Z
planes, providing up to twelve unconfined shear simulations (six
off-diagonal components of @bva � two directions (positive and
negative)) for each set of {microstructure, material, lattice orienta-
tion}. Under these loading conditions, the magnitude of average
shear strain of the aggregate is c ¼ _ct.

Boundary conditions and nonzero initial conditions for confined
shear in the X direction on the Y plane are, respectively,

vx ¼ _cY along Y ¼ L; vx ¼ vy ¼ vz ¼ 0 along Y ¼ 0;

vy ¼ 0 along Y ¼ L; rabnb ¼ 0 along X; Z ¼ 0; L;
ð35Þ
vxðt ¼ 0Þ ¼ _cY $ @yvxðt ¼ 0Þ ¼ _c: ð36Þ

Conditions (35) differ from those for unconfined compression (33)
in only one respect: in the former, the plane on which shearing
velocities are applied is prohibited from moving in a direction nor-
mal to the shearing direction. This results in an increase in com-
pressive stress in the confined case, since the fixed upper
boundary resists dilatation accompanying shear-induced fracture
within the aggregate. Initial conditions are the same in either case.
Again, particular loading planes and directions are varied among
many simulations.

Boundary conditions and nonzero initial conditions for
shear+compression in the X direction on the Y plane are,
respectively,

vx ¼ _cY along Y ¼ L; vx ¼ vy ¼ vz ¼ 0 along Y ¼ 0;

vy ¼ � _cY along Y ¼ L; rabnb ¼ 0 along X; Z ¼ 0; L;
ð37Þ

vxðt ¼ 0Þ ¼ _cY $ @yvxðt ¼ 0Þ ¼ _c;

vyðt ¼ 0Þ ¼ � _cY $ @yvyðt ¼ 0Þ ¼ � _c:
ð38Þ

Conditions (37) specify simultaneous shear and compression defor-
mation, both at an imposed rate of _c ¼ 105/s. Initial conditions (38)
provide for a corresponding uniform initial velocity gradient. Again,
loading planes and directions are varied among many simulations.
In all three cases listed above (unconfined shear, confined shear,
and shear+compression), fully free, as opposed to periodic, bound-
ary conditions are applied to lateral faces of the microstructure.

Shown in Fig. 8 are shear stress contours r ¼ rab, where @bva is
the corresponding component of the applied velocity gradient. The
applied shear strain is c ¼ 0:03, and material properties are those
of AlON. Results in Fig. 8(a) and (b) correspond to unconfined shear
(33) and confined shear (35), respectively, of microstructure II. No-
tice that local stresses are larger in magnitude in the latter case,
since the microstructure is unable to expand in the vertical direc-
tion to relieve pressure induced by dilatation. The higher pressure
leads to an increase in shear stress for the confined condition. Re-
sults shown in Fig. 8(c) and (d) correspond to microstructure I
(AlON) subjected to shear+compression loading via (37). Results
in Fig. 8(d), wherein approximately half of the grains are removed
from the image, show stresses in the interior of the microstructure
whose exterior is shown in Fig. 8(c). Shear stress magnitudes are
significantly greater for simultaneous shear and compression than
for shear loading alone.

In all boundary and initial conditions considered in (33)–(38),
the microstructure is free to expand or deform in lateral (as op-
posed to vertical) directions, as is clear from Fig. 8. Effects of
restricting motion of the lateral faces are considered in Fig. 9,
which shows average shear stress �s for the same aggregate de-
formed according to confined shear conditions with and without
restricting motion of lateral faces. Precisely, average shear stress
�s for the present loading conditions is computed analogously to
(29):

�s ¼ ð1=AÞ
Z

A
t̂tdA; ð39Þ

where t̂t is the component of traction acting in the direction of
shear, on sheared surface (plane) with area A. The three curves in
Fig. 9 all correspond to the same microstructure, loading plane
and direction, and lattice orientation distribution, with nonlinear
elastic properties for SiC. Fracture is suppressed (i.e., contact be-
tween all grains is rigid) for the stiffest case shown in Fig. 9, which
has a slope of 191 GPa, very close to the Voigt-average shear mod-
ulus G listed in Table 1. This case corresponds to simple shear of an
elastic polycrystalline aggregate. When internal fractures are per-
mitted within the microstructure, but lateral boundaries are moved



Fig. 8. Shear stress r for AlON microstructures subjected to shear deformation c ¼ 0:03: (a) microstructure II, unconfined shear, nonzero @xvy (b) microstructure II, confined
shear, nonzero @xvy (c) microstructure I, shear+compression, nonzero @zvx þ @zvz (d) microstructure I, shear+compression, some grains removed for viewing of specimen
interior.

Fig. 9. Average shear stress versus applied shear strain for SiC microstructure I
subjected to various lateral boundary conditions.
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rigidly (i.e., in simple shear) and are prohibited from expanding to
accommodate dilatation, the intermediate curve in Fig. 9 results.
Note that the average shear stress for this case is lower than that
for the case with no fracture at applied shear strain cJ 0:5%, since
fracture and crack opening/sliding within the aggregate tends to re-
duce the overall stiffness of the aggregate. The lowest average shear
stresses are exhibited by the unconfined case (i.e., free lateral faces).

Behavior of a polycrystalline aggregate embedded within a
much larger sample of material would be expected to exhibit aver-
age shear stress behavior falling in between the two lower curves
in Fig. 9, which represent Dirichlet and Neummann boundary con-
ditions, respectively, on lateral faces. Periodic boundary conditions
(Espinosa and Zavattieri, 2003a,b) would be expected to produce
strength falling between these two curves, leading to a more real-
istic depiction of shearing behavior of a representative volume ele-
ment of material embedded within a larger sample. However,
uniaxial strain conditions for lateral confinement considered in
Section 4.1 are deemed representative of plate impact experi-
ments, as has been assumed in previous studies (Clayton, 2005b;
Foulk and Vogler, 2010). And free boundary conditions considered
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for unconfined compression in Section 4.2 are deemed more appro-
priate than periodic boundary conditions for modeling miniature
dynamic compression experiments (Paliwal et al., 2008) wherein
the actual size of the experimental sample is comparable to that
of the simulated polycrystalline aggregate.

Weibull distributions are often used to characterize failure
behavior of brittle solids, including polycrystalline ceramics
(Warner et al., 2005; Brannon et al., 2007; Foulk and Vogler,
2010; Graham-Brady, 2010; Leavy et al., 2010). Let s P 0 denote
an independent variable. A two-parameter Weibull distribution
(Hayter, 1996) has a probability density function

f̂ ðsÞ ¼ mr�m
0 sm�1 exp½�ðs=r0Þm�; ð40Þ

and cumulative distribution function

f ðsÞ ¼
Z s

0
f̂ ðxÞdx ¼ 1� exp½�ðs=r0Þm�; ð41Þ

where m is the Weibull modulus and r0 is a parameter with the
same physical dimensions as s. Analyzed in what follows next are
statistics of failure for numerous simulations involving unconfined
shear boundary conditions (33). The shear stress at failure (i.e., the
shear strength) s for a given simulation is defined as the peak stress
at which @�s=@c ¼ 0. For simulation results analyzed here, the prob-
ability f of failure at or below a given shear stress s is found by order-
ing the results of many simulations from lowest to highest shear
strength and assigning the jth result in a series of n simulations a
failure probability fj ¼ 1

n ðj� 1
2Þ (Warner et al., 2005; Furnish et al.,

2007). A plot of lnfln½1=ð1� f Þ�g versus ln s exhibits slope m (the
Weibull modulus). A ‘‘nominal strength’’ (Warner et al., 2005) for a
series of simulations is calculated as r0 ¼ expð�b=mÞ, where b is
the vertical intercept of the linear fit to this plot, noting that
f ðr0Þ ¼ 1� expð�1Þ � 0:632. Recall that the higher the value of
Weibull modulus m, the lower the variability or scatter in variable s.

Weibull fits to unconfined strength data collected from many
simulations of unconfined dynamic shear are shown in Fig. 10(a)
for SiC and Fig. 10(b) for AlON. Data from several dozen simula-
tions are considered in each case, incorporating various micro-
structures, random lattice orientation distributions, and loading
directions. Fits to the data are constructed by considering results
of each of microstructures I (50 grains) and II (126 grains) individ-
ually, as well as data from results of simulations on both micro-
structures taken together. For each material, microstructure I
exhibits a higher Weibull modulus than microstructure II, corre-
sponding to more uniform shear failure statistics. A reduction in
Fig. 10. Weibull fits to all relevant simulation results (multiple microstructures, grain o
SiC (b) AlON.
Weibull modulus with increasing sample size has been noted else-
where from static flexure and indentation experiments on SiC
(Wereszczak et al., 2010). However, diametral compression data
for SiC (Leavy et al., 2010) demonstrate an increasing Weibull mod-
ulus and decreasing median strength with increasing sample size.
Comparing Fig. 10(a) and (b), predicted Weibull moduli for AlON
microstructures are significantly lower that those for SiC.

Table 8 compares Weibull parameters from the present work
with those obtained from other modeling (Foulk and Vogler,
2010) and experimental (Klein and Miller, 2001; Warner et al.,
2005; Patel et al., 2006; Ray et al., 2007; Furnish et al., 2007; Were-
szczak et al., 2010) studies. For the present modeling results, nom-
inal strength r0 is substantially greater in SiC (0.52 GPa) than in
AlON (0.35 GPa), as would be expected from the prescribed inter-
facial strengths in Table 2: tc

SiC=tc
AlON � 1:9 > 0:52=0:35 � 1:5. Nom-

inal strength r0 does not vary appreciably between results for
microstructures I and II, in contrast to Weibull modulus m. Weibull
moduli computed for SiC in the present work are significantly lar-
ger than those observed in experiments (Ray et al., 2007; Furnish
et al., 2007; Wereszczak et al., 2010). Note however that loading
conditions considered elsewhere (shock loading, static bending,
or static indentation) differ from those considered in the present
simulations (dynamic unconfined shear). Furthermore, sample
sizes considered in the present work are significantly smaller in
terms of number of grains than specimens tested experimentally.
Weibull moduli computed in the present work for AlON are closer
to, but still generally larger than, those measured experimentally
(Klein and Miller, 2001; Warner et al., 2005; Patel et al., 2006). It
is emphasized that experimental data for Weibull parameters for
both materials (SiC and AlON) vary significantly from study to
study as a result of differences in material samples (e.g., different
processing routes leading to variable defect content), experimental
loading techniques, and specimen sizes. However, a general trend
of lower nominal strength and lower Weibull modulus in AlON
than in SiC is evident in the experimental values listed in Table
8; furthermore, this trend is qualitatively reflected by the present
model predictions.

Table 9 shows peak shear strengths for various simulations
involving different materials, microstructures, loading directions,
and initial lattice orientation distributions. Unconfined boundary
conditions correspond to (33); confined boundary conditions cor-
respond to (35). Directions refer to shearing in positive (+) and
negative (-) directions on the same plane of loading. The rightmost
column of Table 9 lists the percentage difference in peak strength
rientations, and loading directions) for peak average unconfined shear strength: (a)



Table 8
Weibull parameters for SiC and AlON.

Model/experiment Material Microstructure Strength r0 [GPa] m

Model (present) SiC I and II Unconfined shear 0.517 45.2
Model (present) SiC I Unconfined shear 0.516 59.0
Model (present) SiC II Unconfined shear 0.518 34.5
Model (Foulk and Vogler, 2010) SiC – Spall 11.6–12.3 12–18
Experiment (Ray et al., 2007) SiC – Flexure 0.367–0.617 4.9–26.6
Experiment (Furnish et al., 2007) SiC – HEL 10.23–10.33 14.4–29.7
Experiment (Wereszczak et al., 2010) SiC – Indentation 0.876–2.652 13.9–20.1
Experiment (Wereszczak et al., 2010) SiC – Flexure 0.268–0.776 6.6–12.2
Model (present) AlON I and II Unconfined shear 0.345 14.9
Model (present) AlON I Unconfined shear 0.340 21.5
Model (present) AlON II Unconfined shear 0.353 9.9
Experiment (Klein and Miller, 2001) AlON – Flexure 0.315 4.45
Experiment (Warner et al., 2005) AlON – Flexure 0.288–0.812 2.9–26.3
Experiment (Patel et al., 2006) AlON – Indentation 0.228 8.7
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for the two lattice orientation sets considered on a given row,
quantifying effects of elastic anisotropy. Specifically, this difference
is computed as 2ðs1 � s2Þ=ðs1 þ s2Þ � 100%, where subscripts refer
to orientation sets 1 and 2. Comparing results for SiC and AlON, it
appears that anisotropy has a greater effect on shear strength in
AlON than in SiC, especially for unconfined boundary conditions.
Recall from Table 2 that the Zener anisotropy factor deviates more
from unity for AlON (2.38) than SiC (0.83). However, SiC is hexag-
onal, and additional anisotropy results from C13 – C12 and
C33 – C11. Increased variability due to anisotropy would contribute
to a lower predicted Weibull modulus in AlON compared to that of
SiC. Differences in peak strength due to differences in loading
direction (+ versus -) are also generally larger in AlON than in
SiC. Because of its lower prescribed cohesive strength and fracture
energy, AlON may be more sensitive than SiC to local variations in
microstructure geometry (e.g., grain boundary facets oriented
favorably for fracture or stress concentrations at triple points) that
would lead to fracture intitiation and subsequent failure. Variabli-
tity due to loading direction (i.e., grain morphology) tends to ex-
ceed that due to elastic anisotropy. When the material is loaded
in forward and reverse directions, different fracture sites can acti-
vate. In all simulations, confinement leads to an increase in shear
strength relative to the corresponding unconfined case. Normal
stress R on the confined surface does contribute to computed aver-
age shear strength:

s ¼
ffiffiffiffi
J2

p
¼ ½ð3�s2 þ R2Þ=3�1=2

; ð42Þ

where J2 is the second invariant of the average deviatoric shear
stress. For unconfined shear, R ¼ 0 and s ¼ �s.
Table 9
Representative peak shear strengths for SiC and AlON: various microstructures, loading di

Material Micro- Boundary Condition Loading Direction

SiC I Unconfined þ
SiC I Unconfined �
SiC I Confined þ
SiC I Confined �
SiC II Unconfined þ
SiC II Unconfined �
SiC II Confined þ
SiC II Confined �
AlON I Unconfined þ
AlON I Unconfined �
AlON I Confined þ
AlON I Confined �
AlON II Unconfined þ
AlON II Confined þ
4.4. Summary and discussion

Considered collectively, results presented in Sections 4.1, 4.2
and 4.3 demonstrate increasing shear strength with increasing
average pressure for both SiC and AlON polycrystals. Relationships
between shear strength s ¼

ffiffiffiffi
J2

p
and average pressure P are shown

in Fig. 11(a) for SiC and (b) for AlON. Strength corresponds to the
peak value of average shear stress defined in (42) for unconfined
compression (i.e., s ¼ R=

ffiffiffi
3
p

for uniaxial stress compression), or
for shear loading with or without confinement or superimposed
compression. For uniaxial strain loading, following previous models
(Lee et al., 2005; Brannon et al., 2007; Leavy et al., 2010), the shear
strength from (30), multiplied by 2=

ffiffiffi
3
p

to be consistent with
ffiffiffiffi
J2

p
,

taken at the compressive strain (i.e., current volume) corresponding
to the Hugoniot elastic limit (HEL) is used: V=V0 ¼ 0:975 for SiC
(Clayton, 2010c; Feng et al., 1998) and V=V0 ¼ 0:970 for AlON (Clay-
ton, 2011a; Dandekar et al., 2007). Average pressure is always com-
puted via the second of (30) and vanishes for unconfined shear
loading. The horizontal intercept at null shear strength (i.e., the
hydrostatic tensile strength) follows directly from the prescribed
cohesive strength of each material (Table 1) as �tc=3.

Also shown in Fig. 11 are analytical fits (solid lines) to the pres-
ent model results (SiC and AlON) and fits to experimental data (Lee
et al., 2005) (SiC only). Comprehensive shear strength versus pres-
sure data (experimental or numerical) for AlON have not been pub-
lished elsewhere, to the authors’ knowledge. Two functional forms
are shown. The first, which has been used elsewhere for SiC (Lee
et al., 2005), follows from a cap plasticity model formulated in
the context of geomechanics (Sandler and Rubin, 1979):
rections, and lattice orientation distributions.

s [GPa] Orientation 1 s [GPa] Orientation 2 Difference [%]

0.521 0.525 0.8
0.514 0.516 0.4
0.715 0.713 0.3
0.696 0.704 1.1
0.506 0.500 1.2
0.496 0.493 0.6
0.643 0.630 2.0
0.636 0.631 0.8
0.314 0.333 5.9
0.352 0.302 15.3
0.432 0.416 3.8
0.472 0.475 0.6
0.325 0.395 19.4
0.402 0.407 1.2



Fig. 11. Average shear strength versus average pressure for all relevant simulation results (multiple microstructures, grain orientation distributions, loading directions, and
confinement conditions): (a) SiC (b) AlON.

Table 11
Strength (s ¼

ffiffiffiffi
J2

p
) versus pressure (P or mean stress) for SiC.

Model or experiment Loading P
[GPa]

s
[GPa]

Mesoscale simulation (Eq. (44)) Uniaxial strain

105/s

1.0 2.1

5.0 3.8
10.0 4.0
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s ¼ a1 � a2 expð�a3PÞ þ a4P; ð43Þ

where a1; a2; a3, and a4 are constants. Notice that the constants are
labeled slightly differently here than in Lee et al. (2005); all con-
stants in (43) are positive in sign and P is positive in compression.
The second follows from a continuum damage mechanics model
used for ceramics under impact loading (Leavy et al., 2010):

s ¼ b1f1� exp½�ðb2=b1Þðb3 þ PÞ�g; ð44Þ

where b1; b2, and b3 are constants. Parameters for each fit are listed
in Table 10.

First consider numerical data from the present simulations. In
each material, the increase in shear strength with compressive
pressure or confinement is evident. Previous models (Brannon
et al., 2007, 2009; Leavy et al., 2010) have assumed that variability
in strength decreases with an increase in pressure. This phenome-
non is not apparent from the present results. Percentage-wise, dif-
ferences in strength from simulation to simulation are of the same
order of magnitude for unconfined and confined loading, as is evi-
dent from Tables 3, 4, and 9. Overall, the shear stiffness of SiC is
greater than that of AlON because of the greater prescribed elastic
stiffness (e.g., second-order elastic constants), fracture strength,
and fracture energy in the former. The analytical fit to experimen-
tal results for SiC (Lee et al., 2005) exhibits higher strength than the
present model results at high pressures and lower strength than
the present results at low pressures; however, the fit to experi-
mental results is valid only for the pressure regime shown and
does not extrapolate correctly to lower compressive pressures or
the tensile regime. Also shown in Fig. 11(a) is a ‘‘best fit’’ to com-
bined experimental and numerical data deemed most appropriate
for dynamic behavior of SiC over the entire pressure regime shown.
Table 10
Parameters for pressure-dependent strength models of SiC and AlON.

Parameter SiC
(simulation)

SiC (Lee et al.,
2005)

SiC (best
fit)

AlON
(simulation)

a1 [GPa] 3.0 3.5 – 2.3
a2 [GPa] 2.5 6.3 – 1.9
a3 [1/GPa] 1.0 1.1 – 1.7
a4 0.15 0.21 – 0.1
b1 [GPa] 4.0 – 5.5 3.0
b2 2.5 – 2.0 3.0
b3 [GPa] 0.19 – 0.19 0.10
Table 11 summarizes pressure-strength behavior for SiC ob-
tained from various models and experiments. At higher pressures,
mesoscale simulation data fit to (44) provides a lower strength
than other models and plate impact experiments. The ‘‘best fit’’
to (44) matches strength data reported by (Lee et al., 2005, p. 25)
at P ¼ 10 GPa but gives a lower shear strength than that reported
in Feng et al. (1998). The ‘‘JH-1’’ model (Holmquist and Johnson,
2002) provides stiffer shear strength versus pressure behavior than
the present model fits when the ceramic is considered intact, but
much lower strength when the ceramic has ‘‘failed’’ due to plastic
strain accumulation.

Parameters listed in Tables 8 and 10 can be used directly in
macroscopic models of inelasticity and failure of ceramic materials
incorporating Weibull statistics and pressure-dependent shear
strength (Brannon et al., 2007, 2009; Leavy et al., 2010). The pres-
ent results may be particularly valuable for AlON, for which exper-
imental data (statistical and pressure-strength) are not as readily
available. The present modeling effort considers sample sizes
(1 mm3, �100 grains) commensurate with finite element sizes
used in macroscopic applications (Brannon et al., 2007; Leavy
et al., 2010). Furthermore, strain rates considered are applied uni-
formly to the microstructure through appropriate boundary condi-
tions and initial conditions on the velocity gradient, and are of
Best fit (Eq. (44)) Various 1.0 2.0
5.0 4.7
10.0 5.4

JH-1 intact (Holmquist and Johnson,
2002)

Uniaxial strain

105/s

1.0 2.4

5.0 5.6
10.0 7.8

JH-1 failed (Holmquist and Johnson,
2002)

Uniaxial strain

105/s

P 3:3 0.8

Experiment (Feng et al., 1998) Plate impact 4.6 4.8
5.5 5.2
9.7 7.9

Experiment (Lee et al., 2005) Plate impact 10.0 5.4
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magnitude pertinent to ballistic events (105/s). This is in contrast
to static data (Lee et al., 2005), extrapolated to the dynamic regime,
often used to parameterize such models at lower confining pres-
sures in the absence of very high-rate data (Brannon et al., 2007,
2009; Leavy et al., 2010). Simulation results may also be used to in-
form macroscopic models explicitly considering crack opening dis-
placements in the context of large deformation kinematics
(Clayton and McDowell, 2003, 2004; Clayton, 2005a, 2010a); such
an effort may be pursued in future work. The present results sug-
gest two features of current macroscopic ceramic models that war-
rant further consideration and possible refinement: (i) possible
size dependence of the Weibull modulus and (ii) statistical vari-
ability in shear strength at various pressures and loading rates.
Existing models (Brannon et al., 2007, 2009; Leavy et al., 2010)
consider a constant Weibull modulus for hydrostatic tensile
strength and assume reduced variability in strength at high pres-
sures (e.g., in the regime of plate impact or uniaxial strain
experiments).

Predictions of the present work follow from a number of mod-
eling assumptions. Possible limitations of the present modeling ef-
fort are enumerated below:

1. Grain structures considered are synthetic, with random initial
lattice orientation distributions used to specify anisotropic elas-
tic constants. Greater physical realism would be attained from
finite element meshes of microstructures obtained from sec-
tioned material samples, with intial lattice orientation distribu-
tions obtained from EBSD measurements, for example (Brahme
et al., 2006; Rollett et al., 2007). In particular, SiC-N can often
exhibit relatively elongated grains (Lee et al., 2005; Ray et al.,
2007; Vargas-Gonzalez et al., 2010), whereas AlON often exhib-
its relatively equiaxed grains (Corbin, 1989; McCauley et al.,
2009; Guo et al., 2011).

2. Dislocation-mediated plasticity and twinning are not consid-
ered. When confining pressures and shear stresses are large,
fracture may be suppressed and dislocation motion may occur
in ceramics. In hexagonal polytypes of SiC, partial dislocation
motion on basal planes and associated stacking fault propaga-
tion are thought to be the prominent mode of plastic deforma-
tion (Zhang et al., 2005b,a; Clayton, 2010c). In AlON, dislocation
slip and twinning on octahedral planes has been observed in
experiments (Paliwal et al., 2008; McCauley et al., 2009) and
modeled with crystal plasticity theory (Gazonas et al., 2010;
Clayton, 2011a).

3. Significant uncertainty exists for some elastic properties. Com-
plete second-order elastic constants have been measured for
SiC (Kamitani et al., 1997). The remaining elastic properties
listed in Table 1 are theoretical predictions. Pressure dependen-
cies of second-order elastic coefficients of SiC follow from
atomic modeling (Davydov, 2004). Anisotropic second-order
elastic constants for AlON have been computed using first prin-
ciples (Gazonas et al., 2010), as have pressure dependencies of
second-order elastic coefficients (Batyrev et al., 2011). Recent
indentation experiments suggest that AlON may be highly elas-
tically anisotropic (Guo et al., 2011), in qualitative agreement
with anisotropic constants used in the present work but con-
tradicting previous work wherein nearly isotropic elastic con-
stants were used (Clayton, 2011a).

4. Uniform cohesive properties (i.e., fracture strength and fracture
energy) are assigned to all grain boundaries in a given micro-
structure. In real ceramic polycrystals, variability in fracture
properties may arise from voids, inclusions, and secondary
phases, though in some cases secondary phases may be incor-
porated deliberately to improve fracture toughness (Faber and
Evans, 1983; Shih et al., 1998; Vargas-Gonzalez et al., 2010).
Grain boundary misorientation may also influence local fracture
properties. Highly non-uniform grain boundary properties
would be expected to result in greater variability in predicted
failure statistics, e.g., lower Weibull moduli. In principle, grain
boundary strengths could be seeded to enable simulation
results to match experimental failure statistics. However, for
statistics obtained from numerical simulations to be labeled
as truly predictive, input parameters for mesoscale models
should be obtained from independent experiments that mea-
sure local property distributions, or from atomic theory (Kohy-
ama, 1999), rather than calibrated to match macroscopic failure
data.

5. Contact is assumed frictionless between grain boundary facets.
Some sliding friction might be expected between failed sur-
faces, as has been considered in previous models (Kraft and
Molinari, 2008; Kraft et al., 2008). Incorporation of frictional
sliding would presumably increase predicted shear strengths
of polycrystalline aggregates, especially at higher confining
pressures. In particular, omission of contact friction may, at
least partially, explain the lower compressive and shear stresses
predicted for SiC microstructures in the present simulations rel-
ative to corresponding experimental data.

6. Porosity is not considered. Polycrystalline ceramics are not fully
dense, with measured porosities in SiC and AlON on the order of
one to several percent (Graham et al., 1988; Lee et al., 2005;
Dandekar et al., 2007). Pore collapse can influence the high
pressure response of ceramics and geologic solids, e.g., resulting
in increased compressibility relative to a fully dense material
(Clayton, 2008, 2011a).

7. Transgranular failures, i.e., cleavage fractures, are not addressed.
Failure in SiC-N is predominantly intergranular (Faber and
Evans, 1983; Shih et al., 1998; Lee et al., 2005), although trans-
granular fractures are observed to a lesser extent (Ray et al.,
2007). Transgranular fracture has been observed in AlON
deformed at high rates (Paliwal et al., 2008; McCauley et al.,
2009) and in static indentation experiments (Guo et al., 2011).

8. Adiabatic conditions are assumed, with isentropic elastic
behavior used for single crystals within each microstructure.
In real materials, plastic deformation, twinning, pore collapse,
and frictional sliding at fractured interfaces could all contribute
to dissipation (i.e., entropy production) and temperature rise at
high rates of loading. If such effects are significant, consider-
ation of thermal expansion, temperature dependent elastic
coefficients, and temperature dependent cohesive properties
(Clayton, 2005b) may be warranted.

9. Boundary and initial conditions used in simulations may deviate
from those encountered in experiments to which some results
have been compared. Specifically, the present uniaxial strain
simulations assign homogeneous compression, omitting the
shock process that occurs in plate impact tests. The present
shear and shear+compression simulations assign free conditions
on lateral faces; periodic boundary conditions might be
expected to offer a more realistic representation of bulk material
behavior and provide somewhat greater strength and stiffness.

In the context of the above limitations, the present results pro-
vide a basis for comparison with future work in which more phys-
ical details can be incorporated, e.g., reconstructed actual
microstructures, dislocations, twins, initial defect distributions,
and transgranular fracture.

5. Conclusions

Numerous three-dimensional finite element simulations of dy-
namic deformation and fracture of polcrystalline ceramic micro-
structures have been conducted. Uniaxial strain compression,
unconfined compression, and shear loading (with and without
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confinement) have been considered. Single crystal deformations
have been modeled using nonlinear anisotropic hyperelasticity.
Intergranular fractures have been modeled using cohesive zone
theory with fracture strength and fracture energy obtained from
macroscopic flexure data. Properties are representative of SiC and
AlON. Various microstructures, lattice orientation distributions,
and loading directions have been considered. Failure statistics have
been analyzed.

Results obtained provide new insight into dynamic behavior of
ceramic polycrystals for small specimen sizes and loading condi-
tions (e.g., uniform velocity gradient boundary and initial condi-
tions at very high strain rates) not accessible through traditional
experiments such as plate impact-driven shock compression or
Kolsky bar compression. Key findings are summarized as follows:

� Shear strength of polycrystalline aggregates increases with con-
fining pressure in both materials, in qualitative agreement with
experimentally observed trends for brittle solids. Confinement
inhibits dilatation associated with interfacial sliding among
misaligned grains, leading to an increase in shear stress neces-
sary for mode II crack propagation. Analytical fits to pressure-
strength data have been developed for use in macroscopic mod-
els of inelasticity in SiC and AlON ceramics.
� For uniaxial strain compression, predicted average axial stresses

agree favorably with experimental plate impact data on larger
specimens of AlON, but are lower than experimental values
for SiC by up to 10–20%. Predicted average shear stresses in
both materials are in close agreement with experimental values
at higher pressures (e.g., at 5% volumetric compression), but are
lower than experimental values at lower pressures.
� In both materials, the predicted Weibull modulus for average

unconfined shear strength tends to decrease with an increase
in number of grains contained in the microstructure, in qualita-
tive agreement with some experimental observations of
decreasing Weibull modulus with increasing sample size.
� Predicted Weibull parameters for shear strength are smaller for

AlON than SiC, reflecting lower mean strength and greater var-
iability in the former, in qualitative agreement with experi-
ments. It is suspected that the lower prescribed cohesive
strength and toughness for AlON contribute to an increased sen-
sitivity to fracture initiation at interfaces or triple junctions
most favorably oriented for fracture.
� Shear failure behavior of AlON appears more sensitive to initial

lattice orientation than corresponding behavior of SiC micro-
structures with the same grain morphology, suggesting a
greater sensitivity to elastic anisotropy in the former.

The above conclusions follow from analysis of numerical simu-
lations incorporating idealized microstructures and idealized frac-
ture behavior, without consideration of defects such as pre-
existing flaws, voids, inclusions, dislocations, or deformation twins.
Thus, the present work should be viewed as a reference against
which future studies incorporating such defects can be compared.
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